Heuristic model free optimal controller design using gradient based PSO
Heuristic model free optimal controller design using gradient based PSO
Blog Article
Designing nonlinear optimal controllers such as Minimum Variance Controller (MVC) has many difficulties.Main difficulties are 1) in order to design controller; the explicit relations between outputs and inputs must be executable.This relation is defined implicitly in the nonlinear models; 2) learning controller is high dimensional-multimodal optimization task and search space can be extremely rugged and has many dragon ball lg disney local minima.For overcoming these disadvantages, in this paper, the model free optimal controller scheme is utilized.In model free controller, as the system model is not available, the gradient of the cost function cannot be executed.
Instead, in this paper, a relation between gradient of the controller with gradient of the system wac 4011 model is derived by inverse lemma.The controller structure is selected to be neural network.Then, the gradient based PSO (GPSO) is proposed to learning the controller.GPSO has both advantages of global searching and convergence properties.The application of the methodology to the empirical the CSTR model indicates that this approach gives very credible estimates of the controller.
The simulation results indicate that the proposed method can be more accurate than existing methods.